Visualization of Big Spatial Data Using Coresets for Kernel Density Estimates

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualization of Big Spatial Data using Coresets for Kernel Density Estimates

The size of large, geo-located datasets has reached scales where visualization of all data points is inefficient. Random sampling is a method to reduce the size of a dataset, yet it can introduce unwanted errors. We describe a method for subsampling of spatial data suitable for creating kernel density estimates from very large data and demonstrate that it results in less error than random sampl...

متن کامل

Improved Coresets for Kernel Density Estimates

We study the construction of coresets for kernel density estimates. That is we show how to approximate the kernel density estimate described by a large point set with another kernel density estimate with a much smaller point set. For characteristic kernels (including Gaussian and Laplace kernels), our approximation preserves the L∞ error between kernel density estimates within error ε, with cor...

متن کامل

Near-Optimal Coresets of Kernel Density Estimates

We construct near-optimal coresets for kernel density estimate for points in Rd when the kernel is positive definite. Specifically we show a polynomial time construction for a coreset of size O( √ d log(1/ε)/ε), and we show a near-matching lower bound of size Ω( √ d/ε). The upper bound is a polynomial in 1/ε improvement when d ∈ [3, 1/ε2) (for all kernels except the Gaussian kernel which had a ...

متن کامل

Using Kernel Density Estimates to Investigate Multimodality Using Kernel Density Estimates to Investigate Multimodality

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. SUMMARY A technique for using kernel density estimates to ...

متن کامل

Quality and Efficiency in Kernel Density Estimates for Large Data∗

Kernel density estimates are important for a broad variety of applications. Their construction has been well-studied, but existing techniques are expensive on massive datasets and/or only provide heuristic approximations without theoretical guarantees. We propose randomized and deterministic algorithms with quality guarantees which are orders of magnitude more efficient than previous algorithms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Big Data

سال: 2021

ISSN: 2332-7790,2372-2096

DOI: 10.1109/tbdata.2019.2913655